18 resultados para Heart

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is an emerging risk factor and therapeutic target for cardiovascular disease. The activity and mass of this enzyme are heritable traits, but major genetic determinants have not been explored in a systematic, genome-wide fashion. We carried out a genome-wide association study of Lp-PLA(2) activity and mass in 6,668 Caucasian subjects from the population-based Framingham Heart Study. Clinical data and genotypes from the Affymetrix 550K SNP array were obtained from the open-access Framingham SHARe project. Each polymorphism that passed quality control was tested for associations with Lp-PLA(2) activity and mass using linear mixed models implemented in the R statistical package, accounting for familial correlations, and controlling for age, sex, smoking, lipid-lowering-medication use, and cohort. For Lp-PLA(2) activity, polymorphisms at four independent loci reached genome-wide significance, including the APOE/APOC1 region on chromosome 19 (p = 6 x 10(-24)); CELSR2/PSRC1 on chromosome 1 (p = 3 x 10(-15)); SCARB1 on chromosome 12 (p = 1x10(-8)) and ZNF259/BUD13 in the APOA5/APOA1 gene region on chromosome 11 (p = 4 x 10(-8)). All of these remained significant after accounting for associations with LDL cholesterol, HDL cholesterol, or triglycerides. For Lp-PLA(2) mass, 12 SNPs achieved genome-wide significance, all clustering in a region on chromosome 6p12.3 near the PLA2G7 gene. Our analyses demonstrate that genetic polymorphisms may contribute to inter-individual variation in Lp-PLA(2) activity and mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Genetic manipulation to reverse molecular abnormalities associated with dysfunctional myocardium may provide novel treatment. This study aimed to determine the feasibility and functional consequences of in vivo beta-adrenergic receptor kinase (betaARK1) inhibition in a model of chronic left ventricular (LV) dysfunction after myocardial infarction (MI). METHODS AND RESULTS: Rabbits underwent ligation of the left circumflex (LCx) marginal artery and implantation of sonomicrometric crystals. Baseline cardiac physiology was studied 3 weeks after MI; 5x10(11) viral particles of adenovirus was percutaneously delivered through the LCx. Animals received transgenes encoding a peptide inhibitor of betaARK1 (Adeno-betaARKct) or an empty virus (EV) as control. One week after gene delivery, global LV and regional systolic function were measured again to assess gene treatment. Adeno-betaARKct delivery to the failing heart through the LCx resulted in chamber-specific expression of the betaARKct. Baseline in vivo LV systolic performance was improved in Adeno-betaARKct-treated animals compared with their individual pre-gene delivery values and compared with EV-treated rabbits. Total beta-AR density and betaARK1 levels were unchanged between treatment groups; however, beta-AR-stimulated adenylyl cyclase activity in the LV was significantly higher in Adeno-betaARKct-treated rabbits compared with EV-treated animals. CONCLUSIONS: In vivo delivery of Adeno-betaARKct is feasible in the infarcted/failing heart by coronary catheterization; expression of betaARKct results in marked reversal of ventricular dysfunction. Thus, inhibition of betaARK1 provides a novel treatment strategy for improving the cardiac performance of the post-MI heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Heart failure is characterized by abnormalities in beta-adrenergic receptor (betaAR) signaling, including increased level of myocardial betaAR kinase 1 (betaARK1). Our previous studies have shown that inhibition of betaARK1 with the use of the Gbetagamma sequestering peptide of betaARK1 (betaARKct) can prevent cardiac dysfunction in models of heart failure. Because inhibition of betaARK activity is pivotal for amelioration of cardiac dysfunction, we investigated whether the level of betaARK1 inhibition correlates with the degree of heart failure. METHODS AND RESULTS: Transgenic (TG) mice with varying degrees of cardiac-specific expression of betaARKct peptide underwent transverse aortic constriction (TAC) for 12 weeks. Cardiac function was assessed by serial echocardiography in conscious mice, and the level of myocardial betaARKct protein was quantified at termination of the study. TG mice showed a positive linear relationship between the level of betaARKct protein expression and fractional shortening at 12 weeks after TAC. TG mice with low betaARKct expression developed severe heart failure, whereas mice with high betaARKct expression showed significantly less cardiac deterioration than wild-type (WT) mice. Importantly, mice with a high level of betaARKct expression had preserved isoproterenol-stimulated adenylyl cyclase activity and normal betaAR densities in the cardiac membranes. In contrast, mice with low expression of the transgene had marked abnormalities in betaAR function, similar to the WT mice. CONCLUSIONS: These data show that the level of betaARK1 inhibition determines the degree to which cardiac function can be preserved in response to pressure overload and has important therapeutic implications when betaARK1 inhibition is considered as a molecular target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibodies specific for the beta(1)-adrenergic receptor are found in patients with chronic heart failure of various etiologies. From work presented in this issue of the JCI, we can now infer that these antibodies actually contribute to the pathogenesis of chronic heart failure. This commentary discusses mechanisms by which these antibodies may engender cardiomyopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, including alpha(1B)-adrenergic receptors (ARs), resulting in desensitization. In vivo analysis of GRK substrate selectivity has been limited. Therefore, we generated hybrid transgenic mice with myocardium-targeted overexpression of 1 of 3 GRKs expressed in the heart (GRK2 [commonly known as the beta-AR kinase 1], GRK3, or GRK5) with concomitant cardiac expression of a constitutively activated mutant (CAM) or wild-type alpha(1B)AR. Transgenic mice with cardiac CAMalpha(1B)AR overexpression had enhanced myocardial alpha(1)AR signaling and elevated heart-to-body weight ratios with ventricular atrial natriuretic factor expression denoting myocardial hypertrophy. Transgenic mouse hearts overexpressing only GRK2, GRK3, or GRK5 had no hypertrophy. In hybrid transgenic mice, enhanced in vivo signaling through CAMalpha(1B)ARs, as measured by myocardial diacylglycerol content, was attenuated by concomitant overexpression of GRK3 but not GRK2 or GRK5. CAMalpha(1B)AR-induced hypertrophy and ventricular atrial natriuretic factor expression were significantly attenuated with either concurrent GRK3 or GRK5 overexpression. Similar GRK selectivity was seen in hybrid transgenic mice with wild-type alpha(1B)AR overexpression concurrently with a GRK. GRK2 overexpression was without effect on any in vivo CAM or wild-type alpha(1B)AR cardiac phenotype, which is in contrast to previously reported in vitro findings. Furthermore, endogenous myocardial alpha(1)AR mitogen-activated protein kinase signaling in single-GRK transgenic mice also exhibited selectivity, as GRK3 and GRK5 desensitized in vivo alpha(1)AR mitogen-activated protein kinase responses that were unaffected by GRK2 overexpression. Thus, these results demonstrate that GRKs differentially interact with alpha(1B)ARs in vivo such that GRK3 desensitizes all alpha(1B)AR signaling, whereas GRK5 has partial effects and, most interestingly, GRK2 has no effect on in vivo alpha(1B)AR signaling in the heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic human heart failure is characterized by abnormalities in beta-adrenergic receptor (betaAR) signaling, including increased levels of betaAR kinase 1 (betaARK1), which seems critical to the pathogenesis of the disease. To determine whether inhibition of betaARK1 is sufficient to rescue a model of severe heart failure, we mated transgenic mice overexpressing a peptide inhibitor of betaARK1 (betaARKct) with transgenic mice overexpressing the sarcoplasmic reticulum Ca(2+)-binding protein, calsequestrin (CSQ). CSQ mice have a severe cardiomyopathy and markedly shortened survival (9 +/- 1 weeks). In contrast, CSQ/betaARKct mice exhibited a significant increase in mean survival age (15 +/- 1 weeks; P < 0.0001) and showed less cardiac dilation, and cardiac function was significantly improved (CSQ vs. CSQ/betaARKct, left ventricular end diastolic dimension 5.60 +/- 0.17 mm vs. 4.19 +/- 0.09 mm, P < 0.005; % fractional shortening, 15 +/- 2 vs. 36 +/- 2, P < 0.005). The enhancement of the survival rate in CSQ/betaARKct mice was substantially potentiated by chronic treatment with the betaAR antagonist metoprolol (CSQ/betaARKct nontreated vs. CSQ/betaARKct metoprolol treated, 15 +/- 1 weeks vs. 25 +/- 2 weeks, P < 0.0001). Thus, overexpression of the betaARKct resulted in a marked prolongation in survival and improved cardiac function in a mouse model of severe cardiomyopathy that can be potentiated with beta-blocker therapy. These data demonstrate a significant synergy between an established heart-failure treatment and the strategy of betaARK1 inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Genetic modulation of ventricular function may offer a novel therapeutic strategy for patients with congestive heart failure. Myocardial overexpression of beta(2)-adrenergic receptors (beta(2)ARs) has been shown to enhance contractility in transgenic mice and reverse signaling abnormalities found in failing cardiomyocytes in culture. In this study, we sought to determine the feasibility and in vivo consequences of delivering an adenovirus containing the human beta(2)AR cDNA to ventricular myocardium via catheter-mediated subselective intracoronary delivery. METHODS AND RESULTS: Rabbits underwent percutaneous subselective catheterization of either the left or right coronary artery and infusion of adenoviral vectors containing either a marker transgene (Adeno-betaGal) or the beta(2)AR (Adeno-beta(2)AR). Ventricular function was assessed before catheterization and 3 to 6 days after gene delivery. Both left circumflex- and right coronary artery-mediated delivery of Adeno-beta(2)AR resulted in approximately 10-fold overexpression in a chamber-specific manner. Delivery of Adeno-betaGal did not alter in vivo left ventricular (LV) systolic function, whereas overexpression of beta(2)ARs in the LV improved global LV contractility, as measured by dP/dt(max), at baseline and in response to isoproterenol at both 3 and 6 days after gene delivery. CONCLUSIONS: Percutaneous adenovirus-mediated intracoronary delivery of a potentially therapeutic transgene is feasible, and acute global LV function can be enhanced by LV-specific overexpression of the beta(2)AR. Thus, genetic modulation to enhance the function of the heart may represent a novel therapeutic strategy for congestive heart failure and can be viewed as molecular ventricular assistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clinical use of stem cells, such as bone marrow-derived and, more recently, resident cardiac stem cells, offers great promise for treatment of myocardial infarction and heart failure. The epicardium-derived cells have also attracted attention for their angiogenic paracrine actions and ability to differentiate into cardiomyocytes and vascular cells when activated during cardiac injury. In a recent study, Chong and colleagues have described a distinct population of epicardium-derived mesenchymal stem cells that reside in a perivascular niche of the heart and have a broad multilineage potential. Exploring the therapeutic capacity of these cells will be an exciting future endeavor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heart regeneration is limited in adult mammals but occurs naturally in adult zebrafish through the activation of cardiomyocyte division. Several components of the cardiac injury microenvironment have been identified, yet no factor on its own is known to stimulate overt myocardial hyperplasia in a mature, uninjured animal. In this study, we find evidence that Neuregulin1 (Nrg1), previously shown to have mitogenic effects on mammalian cardiomyocytes, is sharply induced in perivascular cells after injury to the adult zebrafish heart. Inhibition of Erbb2, an Nrg1 co-receptor, disrupts cardiomyocyte proliferation in response to injury, whereas myocardial Nrg1 overexpression enhances this proliferation. In uninjured zebrafish, the reactivation of Nrg1 expression induces cardiomyocyte dedifferentiation, overt muscle hyperplasia, epicardial activation, increased vascularization, and causes cardiomegaly through persistent addition of wall myocardium. Our findings identify Nrg1 as a potent, induced mitogen for the endogenous adult heart regeneration program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Some of the 600,000 patients with solid organ allotransplants need reconstruction with a composite tissue allotransplant, such as the hand, abdominal wall, or face. The aim of this study was to develop a rat model for assessing the effects of a secondary composite tissue allotransplant on a primary heart allotransplant. METHODS: Hearts of Wistar Kyoto rats were harvested and transplanted heterotopically to the neck of recipient Fisher 344 rats. The anastomoses were performed between the donor brachiocephalic artery and the recipient left common carotid artery, and between the donor pulmonary artery and the recipient external jugular vein. Recipients received cyclosporine A for 10 days only. Heart rate was assessed noninvasively. The sequential composite tissue allotransplant consisted of a 3 x 3-cm abdominal musculocutaneous flap harvested from Lewis rats and transplanted to the abdomen of the heart allotransplant recipients. The abdominal flap vessels were connected to the femoral vessels. No further immunosuppression was administered following the composite tissue allotransplant. Ten days after composite tissue allotransplantation, rejection of the heart and abdominal flap was assessed histologically. RESULTS: The rat survival rate of the two-stage transplant surgery was 80 percent. The transplanted heart rate decreased from 150 +/- 22 beats per minute immediately after transplant to 83 +/- 12 beats per minute on day 20 (10 days after stopping immunosuppression). CONCLUSIONS: This sequential allotransplant model is technically demanding. It will facilitate investigation of the effects of a secondary composite tissue allotransplant following primary solid organ transplantation and could be useful in developing future immunotherapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-hospital worsening heart failure represents a clinical scenario wherein a patient hospitalized for acute heart failure experiences a worsening of their condition, requiring escalation of therapy. Worsening heart failure is associated with worse in-hospital and postdischarge outcomes. Worsening heart failure is increasingly being used as an endpoint or combined endpoint in clinical trials, as it is unique to episodes of acute heart failure and captures an important event during the inpatient course. While prediction models have been developed to identify worsening heart failure, there are no known FDA-approved medications associated with decreased worsening heart failure. Continued study is warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The management of acute heart failure is shifting toward treatment approaches outside of a traditional hospital setting. Many heart failure providers are now treating patients in less familiar health care settings, such as acute care clinics, emergency departments, and skilled nursing facilities. In this review we describe the current pressures driving change in the delivery of acute heart failure and summarize the evidence regarding treatments for acute heart failure outside of the inpatient setting. We also provide considerations for the design of future treatment strategies to be implemented in alternative care settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: QRS prolongation is associated with adverse outcomes in mostly white populations, but its clinical significance is not well established for other groups. We investigated the association between QRS duration and mortality in African Americans. METHODS AND RESULTS: We analyzed data from 5146 African Americans in the Jackson Heart Study stratified by QRS duration on baseline 12-lead ECG. We defined QRS prolongation as QRS≥100 ms. We assessed the association between QRS duration and all-cause mortality using Cox proportional hazards models and reported the cumulative incidence of heart failure hospitalization. We identified factors associated with the development of QRS prolongation in patients with normal baseline QRS. At baseline, 30% (n=1528) of participants had QRS prolongation. The cumulative incidences of mortality and heart failure hospitalization were greater with versus without baseline QRS prolongation: 12.6% (95% confidence interval [CI], 11.0-14.4) versus 7.1% (95% CI, 6.3-8.0) and 8.2% (95% CI, 6.9-9.7) versus 4.4% (95% CI, 3.7-5.1), respectively. After risk adjustment, QRS prolongation was associated with increased mortality (hazard ratio, 1.27; 95% CI, 1.03-1.56; P=0.02). There was a linear relationship between QRS duration and mortality (hazard ratio per 10 ms increase, 1.06; 95% CI, 1.01-1.12). Older age, male sex, prior myocardial infarction, lower ejection fraction, left ventricular hypertrophy, and left ventricular dilatation were associated with the development of QRS prolongation. CONCLUSIONS: QRS prolongation in African Americans was associated with increased mortality and heart failure hospitalization. Factors associated with developing QRS prolongation included age, male sex, prior myocardial infarction, and left ventricular structural abnormalities.